МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ТИ НИЯУ МИФИ)

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ПРИКЛАДНОЙ МАТЕМАТИКИ

УТВЕРЖДАЮ

Заместитель директора по УР и РР

___ Л.В.Заляжных

	« <u></u> »	20 г.
	U	
РАБОЧАЯ ПРОГРАМ	ІМА УЧЕБНОИ Д	цисциплины
Методы	и модели в экономи	ке
	наименование дисциплины	
Направление подготовки <u>38.03.01 Экс</u>	ономика	
Профиль подготовки	Экономика	предприятий и
<u>организаций</u>		
Квалификация (степень) выпускника	бакалавр (бакалавр, магистр, специалист	r)
Форма обучения	ОЧНАЯ, ЗАОЧНАЯ (очная, очно-заочная и др.)	

Форма обучения	Очная
Объём учебных занятий в часах	72
- аудиторные занятия:	34
- лекций	18
- лабораторных	16
- практических	-
- самостоятельная работа	38
Форма отчётности	зачет

Учебная группа –

Рабочая программа учебной дисциплины рассмотрена на заседании кафедры «Информационные технологии и прикладная математика» ТИ НИЯУ МИФИ «29» июня 2018 года, протокол №11 и рекомендована для подготовки бакалавров.

И.о.заведующего кафедрой, к.п.н., доцент_	О.Э.Наймушина
	«29» июня 2018 г

1. ЦЕЛЬ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины «Методы и модели в экономике» являются освоение студентами совокупности средств, способов и методов деятельности, направленной на моделирование экономических процессов.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Учебная дисциплина «Методы и модели в экономике» изучается студентами третьего курса, входит в естественно-научный модуль раздела Б.1 по направлению подготовки ОС ВО НИЯУ МИФИ «Экономика» профиля подготовки «Экономика предприятий и организаций».

Дисциплина основывается на знании следующих дисциплин: «Информатика», «Математика».

Входными умениями, знаниями студента, необходимыми при освоении данной дисциплины, приобретенными в результате освоения предшествующих дисциплин, являются:

- Умение выбирать инструментальные средства для обработки экономических данных в соответствии с поставленной задачей, анализировать результаты расчетов (ОПК-3: Математика, Информатика).

Изучение дисциплины необходимо для освоения дисциплины «Автоматизированные системы обработки экономической информации» и др., а также при практической работе выпускников по специальности.

Указанные связи и содержание дисциплины дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии ОС ВО НИЯУ МИФИ, что обеспечивает соответственный теоретический уровень и практическую направленность в системе обучения будущей деятельности бакалавра.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ / ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ И КОМПЕТЕНЦИИ СТУДЕНТА ПО ЗАВЕРШЕНИИ ОСВОЕНИЯ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций: ОПК-3; ПК-4.

Код компетенции	Компетенция
ОПК-3	способностью выбирать инструментальные средства для обработки экономических данных в соответствии с поставленной задачей, анализировать результаты расчетов и обосновывать полученные выводы
ПК-4	способностью на основе описания экономических процессов и явлений строить стандартные теоретические и эконометрические модели, анализировать и содержательно интерпретировать полученные результаты

После изучения данной дисциплины будущий бакалавр должен

Знать:

- инструментальные средства, используемые для моделирования экономических процессов;
- классификацию распределительных и состязательных задач;
- классификацию систем массового обслуживания.

Уметь:

- использовать инструментальные средства (программы Simplex, WORKS, TRANSP и др.) для анализа результатов расчетов;
- строить графы;
- строить сетевые графики процессов.

Владеть:

- навыками выбора инструментальных средств в соответствии с поставленной задачей моделирования процессов;
- основными методами, способами и средствами теории моделирования экономических процессов;
- навыками моделирования экономических процессов, рассмотренных в дисциплине.

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 2 зачетных единицы, 72 часа.

№ п/ п	Наименование раздела учебной дисциплины	Недели	сам	ительно остоято ентов і	учебно ости, вкл ельную ј и трудое к.часах	іючая работу	Обязат. текущий контроль успеваемо сти (форма, неделя)	Аттеста ция раздела (форма, неделя)	Максималь ный балл за раздел
			Лекции	Практическ ие занятии	Лабораторн ые работы	Самостояте льная работа			
1	Раздел 1. Линейное программирование.	1-9	18	-	-	20	Дкл1(3) Зд1(4) Дкл2(7) Т(9)	КИ1(9)	20
2	Раздел 2. Распределительные задачи	10-18	-	-	16	18	ЛР1(10) ЛР2(11) ЛР3(12) Зд2(12) ЛР4(13) ЛР5(14) ЛР6(15) ЛР7(16- 17) ЗР(18)	КИ2 (18)	80
	Зачет								0
	итого		18		16	38			100

НАИМЕНОВАНИЕ ТЕМ И СОДЕРЖАНИЕ ЛЕКЦИОННЫХ ЗАНЯТИЙ

Раздел 1. Линейное программирование.

1. Математическое моделирование. Понятия. Линейные распределительные задачи

Классификация распределительных задач. Линейное программирование. Метод симплекс-таблиц. Задача о назначении. "Венгерский метод" решения задачи о назначении. Транспортная задача. Метод аппроксимации Фогеля. Графический метод решения задачи линейного программирования.

2. Динамическое программирование.

Принцип оптимальности. Задача об оптимальном маршруте. Нелинейная распределительная задача. Метод функциональных уравнений

3. Задачи упорядочения.

Детерминированная задача упорядочения - алгоритм Джонсона.

4. Сетевое планирование.

Основные сведения из теории графов. Упорядочение графа — метод транзитивного замыкания вершин и алгоритм Демукрона. Сетевые графики процессов. Критический путь и календарный график. Задача согласования с вероятностным временем выполнения операций.

5. Задачи массового обслуживания.

Марковские случайные процессы. Уравнения Колмогорова для переходных процессов. Финальные вероятности. Классификация систем массового обслуживания (С.М.О.).

Анализ и синтез (оптимизация) СМО. Формулы Литтла в схеме "гибели и размножения". Одноканальная СМО с ожиданием. Многоканальная СМО с отказами (задача Эрланга).

6. Состязательные задачи.

Классификация состязательных задач. Конечная парная игра с нулевой суммой. Чистые и смешанные стратегии. Методы решения матричных игр: редукция, метод линейного программирования, итерационный метод. Игры в условиях неопределённости. Критерии Вальда, Севиджа, Гурвица.

7. Задачи оптимального раскроя.

Модели оптимального раскроя. Рациональные способы раскроя.

Раздел 2. Распределительные задачи (практический)

Темы лабораторных занятий:

Раздел 2.

- 1. Исследование операций. Линейное программирование: математическое программирование, распределительные задачи, опорный план, метод симплекстаблиц (2 час.)
- 2. Распределительные задачи: задачи о назначениях, транспортная задача, метод потенциалов (2 час.)
- 3. Динамическое программирование: принцип оптимальности, задача об оптимальном маршруте (2 час.)
- 4. Динамическое программирование: нелинейная распределительная задача, метод функциональных уравнений (2 час.)
- 5. Сетевое планирование: задача упорядочивания, задача согласования, элементы теории графов, метод PERT, вероятностная задача. (2 час.)
- 6. Системы массового обслуживания: Марковские процессы, уравнения Колмогорова, финальные вероятности, задачи анализа СМО, синтез СМО. (2 час.)

7. Состязательные задачи: матричные игры, смешанные стратегии, статистические решения (4 час.)

Организация самостоятельной работы студентов

Цель самостоятельной работы: закрепление знаний, полученных на аудиторных занятиях. На самостоятельную работу по каждой теме выносятся следующие задания:

Задание 1. Проработать лекционный материал.

Задание 2. Подготовиться к контрольным мероприятиям согласно календарному плану.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При проведении занятий и организации самостоятельной работы студентов используются:

1. Традиционные технологии обучения, предполагающие передачу информации в готовом виде, формирование учебных умений по образцу: лекция-изложение, лекция-объяснение, лабораторные работы.

Использование традиционных технологий обеспечивает ориентирование студента в потоке информации, связанной с различными подходами к вопросам, рассматриваемым в пределах дисциплины; самоопределение в выборе оптимального пути и способов личностно-профессионального развития; систематизацию знаний, полученных студентами в процессе аудиторной и самостоятельной работы. Практические занятия обеспечивают развитие и закрепление умений и навыков.

2. Интерактивные технологии обучения, предполагающие организацию обучения как продуктивной творческой деятельности в режиме взаимодействия студентов друг с другом и с преподавателем.

Согласно учебному плану количество аудиторных часов по дисциплине -34, из них проводимых в интерактивной форме -4.

ИНТЕРАКТИВНЫЕ ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ НА АУДИТОРНЫХ ЗАНЯТИЯХ

No	Наименование	Вид занятий (лекция, семинар,	Интерактивные	Колич
раз-	раздела дисциплины	практическое занятие,	формы	ество
дела	(тема)	лабораторная работа)	обучения	часов
1	Раздел 1. Линейное	Лекция.	Дкл	2
	программирование		3д	
2	Раздел 2.	Лабораторная работа.	ЛР	2
	Распределительные		3д	
	задачи.			

Использование интерактивных образовательных технологий способствует повышению интереса и мотивации учащихся, активизации мыслительной деятельности и творческого потенциала студентов, делает более эффективным усвоение материала, позволяет индивидуализировать обучение и ввести экстренную коррекцию знаний.

Активные и интерактивные технологии обеспечивают высокий уровень усвоения студентами знаний, успешное овладение умениями и навыками в области эффективного использования ресурсов предприятия, формируют познавательную потребность и необходимость дальнейшего самообразования, позволяют активизировать исследовательскую деятельность, обеспечивают эффективный контроль усвоения знаний.

Самостоятельная работа студентов (38 часов) подразумевает под собой проработку лекционного материала с использованием рекомендуемой литературы и интернет-источников для подготовки к лабораторным работам, докладам, заданиям и тесту.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ВХОДНОГО, ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Оценка знаний студентов при освоении дисциплины основана на балльно-рейтинговой шкале, которая предназначена для комплексной оценки знаний студентов в течение всего курса учебной дисциплины (семестра) и ориентирована на получение объективной картины успеваемости студентов.

Оценка формируется как сумма баллов по всем контрольным мероприятиям на основе стобалльной системы и затем переводится в четырех балльную (российскую) и европейскую (ECTS) системы оценки качества обучения.

Сумма баллов	Оценка по 4-х балльной шкале	Зачет	Оценка (ECTS)	Градация
90 - 100	5(отлично)	зачтено	A	отлично
85 - 89	4 (хорошо)		В	очень хорошо
75 - 84			С	хорошо
70 - 74			D	удовлетворительно
65 - 69	3 (удовлетворительно)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
60 - 64	76 1595 1597		Е	посредственно
Ниже 60	2 (неудовлетворительно)	не зачтено	F	неудовлетворительно

Подробная оценка каждого мероприятия в баллах приведена в ФОС.

Балльно-рейтинговая шкала

Контрольное	Тест	Лаб.		Док	Задания	Зачетная	Максимальный
мероприятие		раб.		лад		работа ЗР	итоговый балл
	T	ЛР	ЛР	Дкл	3д		
		1-7	8				
Максимальн	8	7	14	4	4	20	100
ый балл за 1							
мероприятие							

В т.ч. Раздел 1

Контрольное	Тест	Док	Задания	Максимальный
мероприятие		лад		итоговый балл
	T	Дкл	3д	
Максимальн	8	4	4	20
ый балл за 1				
мероприятие				

В т.ч. Разлел 2

Контрольное	Лаб.		Задания	Зачетная	Максимальный
мероприятие	раб.			работа ЗР	итоговый балл
	ЛР	ЛР	3д		
	1-7	8			
Максимальн	7	14	4	20	80
ый балл за 1					

1			
мероприятие			

В конце пятого семестра проводится зачетная работа, где студенту предлагается решить индивидуальное задание.

Расшифровка уровня знаний, соответствующего полученным баллам, дается в таблице, указанной ниже.

Сумма	Оценка	Vnopovy unvočnogovy v ovovyž no uvovynavyo
баллов	ECTS	Уровень приобретенных знаний по дисциплине
90-100	A	«Отлично» - теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.
85-89	В	«Очень хорошо» - теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом в основном сформированы, все предусмотренные программой обучения учебные задания выполнены, качество выполнения большинства из них оценено числом баллов, близким к максимальному.
75-84	С	«Хорошо» - теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками.
65-74	D	«Удовлетворительно» - теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки.
60-64	Е	«Посредственно» - теоретическое содержание курса освоено частично, некоторые практические навыки работы не сформированы, многие предусмотренные программой обучения учебные задания не выполнены, либо качество выполнения некоторых из них оценено числом баллов, близким к минимальному.
Ниже 60	F	«Неудовлетворительно» - очень слабые знания, недостаточные для понимания курса, имеется большое количество основных ошибок и недочетов.

Студент считается аттестованным по разделу, если он набрал не менее 60% от максимального балла, предусмотренного рабочей программой.

Контрольные мероприятия, за которые студент получил 0 баллов (неявка в установленный срок), подлежат обязательной пересдаче. Сроки пересдач контрольных мероприятий в течение семестра определяет кафедра.

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ СТУДЕНТАМ

Методические указания для студентов с описанием режима и характера аудиторной и самостоятельной учебной работы по дисциплине выложены на портале кафедры. Методические указания студентам при выполнении лабораторных работ приведены в текстах лабораторных работ.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Основная литература

1. Семёнов А.Г. Математические модели в экономике [Электронный ресурс]: учебное пособие/ Семёнов А.Г., Печерских И.А.— Электрон. текстовые данные.— Кемерово: Кемеровский технологический институт пищевой промышленности, 2011.— 187 с.— Режим доступа: http://www.iprbookshop.ru/14374.— ЭБС «IPRbooks»

Дополнительная литература

- 2. Данелян Т.Я. Теория систем и системный анализ [Электронный ресурс]: учебное пособие/ Данелян Т.Я.— Электрон. текстовые данные.— М.: Евразийский открытый институт, 2011.— 303 с.— Режим доступа: http://www.iprbookshop.ru/10867.— ЭБС «IPRbooks»
- 3. Ржевский С.В. Исследование операций [Электронный ресурс]: учебное пособие / Ржевский С.В.— Электрон. текстовые данные.— С-Пб: Лань, 2013.— 480 с.— Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=32821.— ЭБС «Лань»

Программное обеспечение и интернет-ресурсы:

- 1. НОУ ИНТУИТ. Режим доступа: http://www.intuit.ru/studies/courses/676/532/info
- 2. Программы Simplex, WORKS, TRANSP (разработка каф. ИТПМ).

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Лабораторные работы проводятся в специализированных лабораториях, оснащенных персональными компьютерами. Каждый студент имеет свой логин и пароль для доступа к электронному портфолио, в информационном пространстве которого находятся следующие документы дисциплины:

- рабочая программа;
- методические указания для студентов.

Каждый студент имеет доступ к электронно-библиотечной системе IPRbooks и ЭБС «Лань».

Программа составлена в соответствии с требованиями ОС ВО НИЯУ МИФИ с учетом рекомендаций и ПрООП ВО по направлению подготовки «Экономика» профиля подготовки бакалавров «Экономика предприятий и организаций».

Автор: ст. преподаватель кафедры «Информационных технологий и прикладной математики» Ю.А. Порохина.

к.п.н., доцент кафедры «Информационных технологий и прикладной математики» О.Э. Наймушина.